《倍数和因数》教学反思
倚栏轩整理的《倍数和因数》教学反思(精选3篇),提供参考,希望对您有所帮助。
《倍数和因数》教学反思 篇1
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这局部内容同学初次接触,对于同学来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕获生活与数学之间的联系,协助同学理解因数倍数相互依存的关系。所以在上课之前我特意和小朋友们玩了一个小游戏。用“ 我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。同学对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来协助同学理解因数和倍数的概念。
一是教材虽然不是从过去的整除定义动身,而是通过一个乘法算式来引出因数和倍数的概念,但实质上任是以“整除”为基础。所以我上课时特别注意让同学明白什么情况下才干讨论因数和倍数的概念。我举了一些反例加以说明。二是要同学注意区分乘法算式中的.“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1。5是0。3的5倍”,但我们只能说“15是3的倍数”,却不能说“1。5是0。3的倍数”。我在课堂上反复强调,协助小朋友们认真理解辨析,所以同学一节课下来对这组概念就理解透彻了,不会模糊了。
《倍数和因数》教学反思
身为一名到岗不久的人民教师,课堂教学是我们的任务之一,借助教学反思我们可以拓展自己的教学方式,那么应当如何写教学反思呢?以下是小编帮大家整理的《倍数和因数》教学反思,欢迎阅读,希望大家能够喜欢。
《倍数和因数》教学反思 篇2
《倍数和因数》是我们工作室四月份研究的一个课例,我们是先抽签上二十分钟的课堂教学,再进行研讨,我们研究了每一部分的处理方法,同时,为了让我们的课堂更加连贯、自然,我们也研究了例题之间的过渡环节,尝试找到更加恰当的处理方法。那次研究之后我们工作室的每一位成员都根据自己的想法修改了教案。前几天我们工作室又在活动中上了这节课,这次上课的是我,由于事先准备的不够充分课堂中发现了很多的问题,有上次研讨过还需要改进的问题,也有这次上课出现的新问题。课后工作室的成员给了我很多的很好的建议,我根据好的建议修改了我的教学设计,下面我来具体的说一说。
1.情境导入。本节课的内容是《倍数和因数》为了让学生更清楚地感受倍数和因数的依存关系,我课上用了大头儿子和小头爸爸的例子,也用了我是老师,他们是学生的例子。但这两个例子对于本课的教学或许没有太多的意义,好像不能让学生明确感受出倍数的因数的依存关系,所以我们可以把这一部分的内容去掉,直接进入课堂,让学生进行操作活动。
2.倍数和因数的意义。本课是想通过用12个完全相同的正方形拼成长方形的活动来让学生在活动中初步感知倍数和因数的关系,再用具体的例子向学生说明倍数和因数的含义。在课堂中我直接让学生进行操作,两人小组活动,试着摆一摆,看看有没有不同的摆法,在交流的时候让学生说说自己的摆法,每排摆了几个,摆了几排,怎样用乘法算式表示,再让学生有序地说一说,为后面找一个数的因数做好铺垫。再有一道具体的算式举例说明倍数和因数的含义,用我们过去学习的乘法算式中的乘数乘乘数等于积过渡到倍数和因数,再让学生说一说其他两道乘法算式。说完后再给学生一个提醒,并让学生再根据出示的算式说一说谁是谁的倍数和谁是谁的因数,最后的时候让学生自己写一个算式,并说一说。
3.找一个数的倍数。这应该时本节课的重难点内容,在教学中一定要让学生说一说找倍数的方法,而我在上课的`时候把这一个重要的部分一带而过,可以看出来很大一部分学生是没有掌握找倍数的方法的。所以我在思考这一难点该如何突破?是不是应让学生先独立想一想办法,多说一说,给学生足够多的时间让学生去说自己用来找倍数的方法,这样多种方法出来以后,我们可以对方法进行优化,选择快速简单的找法。在教学的时候,同时注培养学生有序写出倍数,注意倍数书写的格式等意识,可以比较有序的找和无序的找,让学生自己感受有序的好处,学生有了有序地找的基本方法后,在进行练习的时候也会选择刚才优化过的好的方法进行练习。
4.找倍数的特征。在完成找一个数的倍数之后,我们可以直接出示3,2,5的倍数是哪些,让学生观察三个倍数,再说一说自己的发现,放手让学生去找或许学生能够很快的找出来,但如果给好具体的问题,可能会限制一些学生的思考。如果学生在观察时没有发现我们所想要总结的特征,可以对学生进行适当的提示,让学生观察一个数最小的倍数,最大的倍数和倍数的个数等。先给学生足够的时间让学生自己去找,我们要相信他们藕能力做到。
5.课堂常规的问题。在上课之前我应先确定好小组的具体分配,以免学生在小组活动中找不到合作的对象,如果上课之前具体的分好了,小组讨论的效率会高很多。在上课时,我要少说,把更多说的机会留给学生,让学生去表达自己的想法,同时还要相信学生,不要怕学生不会,而给出很多的条条框框,限制了学生的思维发展。
《倍数和因数》教学反思 篇3
苏教版课程标准数学实验教材八年级(下册)“倍数和因数”与老教材比较有较大的变化。传统的教材按除法—整除—约数和倍数的顺序安排,课程标准数学实验教材是按操作—乘法—倍数和因数的顺序编写,倍数和因数的概念建立在直观模型之上。教材的变化呼唤教师教学理念的更新和教学方法的改进。笔者四次执教该课,对教学内容和呈现形式作了微调处理并重视与学生平等对话,最终取得了比较好的效果。
1.例3中36的因数如何书写?
第一次试上时我采用了从小到大依次书写的方法,第二次试上时我采用了一对一对书写的方法:1、36,2、18,3、12、4、9、6。第一种方法便于学生发现一个数的因数的特征,但书写时比较麻烦;后一种方法书写起来比较方便,但由于因数不是按大小顺序排列,所以不利于学生发现一个数因数的特征。后面的教学中我对写法作了微调处理:即一对一对书写,但是从两边向中间书写,最后按从小到大的顺序排列。实践证明效果很好,既注重了顺序,也兼顾了方法,且有利于学生发现一个数因数的特征。
2.到底要让学生发现什么?
在教学完例2、例3及其各自的“试一试”后,教材都呈现问题:“观察上面几个例子,你有什么发现?”不少教师认为只要学生能发现教材上揭示的几条一个数的因数或倍数的特征就行了,但我认为,发现的结果不应完全局限于教材上揭示的几条特征。因为发现的过程是学生主动参与的过程,是学生通过经历、观察、猜测、概括等活动获得知识的过程,这一过程是自由的、开放的。我对这一教学内容的微调处理是:放手让学生去探索发现,对于学生的观点只作最后的评判,并选择几条正确的结论揭示在黑板上(当然包括教材中的结论)。事实证明,这样的微调处理激活了学生的潜能,彰显了学生的个性。
3.“有限”和“无限”的结论怎样呈现?
让学生认识“一个数的倍数的个数是无限的”和“一个数的因数的个数是有限的”,教材是分开编排的,即在学习找一个数的倍数后学习前者,在学习完找一个数的因数后再学习后者。我认为在学生学会找一个数的倍数和因数以后,结合板书比较,学生对“有限”和“无限”的理解更加深刻,教学的过程也更加顺畅。实践证明,这一微调处理也更符合学生的认知需求。
与学生平等对话是一种有效的教学方式。传统的问答式教学,学生大多以被动的方式接受学习,很难自己确定思考的方向;有时问答的频度过高,不利于学生对问题作深度思考。对话的教学方式则不然。当学生进入对话状态时,他们能积极主动地与同学或教师进行交流,在思维的碰撞中,对问题的认识易于走向深入。现记录学生观察36、15和16这三个数的因数后的对话。
生:我认为双数的因数中都有2。
师:真聪明!
生:我发现双数的因数是成对成对出现的,而单数的因数个数也是单数。
生:我认为不对,因为单数15的.因数个数是4个,4是双数。
生:单数的因数全部是单数。
师:是吗?大家再找个单数,写出它的所有因数,看看他的发现是否正确。
学生验证检查后,发现是正确的。我及时地表扬了这个学生。
生:我发现1是任何自然数的因数。
师:真了不起,1是任何自然数的因数。再看看一个数的因数中1的大小怎样?
生:最小。
师:那么我们可以说一个数最小的因数是几?
生:一个数最小的因数是1。
生:一个数最大的因数就是它自己。
教师引导学生观察后,共同作出肯定的评价。
师:一个数最大的因数是它自己,这句话,我们又可以说成,一个数最大的因数就是它本身。
生:老师,我还发现一个数最大的因数又是它的倍数。
学生的精彩发言大大出乎我的意料。我想这与教学中平等的对话氛围是分不开的。首先,我把自己定位在与学生平等的话语地位上,用“仰视”的姿态去欣赏学生的发言,让学生心理放松,敢想敢说。其次,绝不轻易打断学生的发言。不管学生的发现在不在点子上,只要他有观点要表达,都要让他把话说完。再次,不失时机地通过鼓励和表扬等方式肯定学生的对话成果,即使认识上有错误,也要肯定他敢于发表观点的勇气。最后,为使对话紧紧围绕主题,注意及时进行适当的引导点拨(引导点拨不能太多,多则会经常打断学生的思维)。比如,在学生发现,1是任何自然数的因数后,我及时表扬他的发现“真了不起”,同时,通过引导学生“看看一个数的因数中1的大小怎样”,把学生的观察引向一个数最小的因数和最大的因数。教师的适当点拨有益于对话的顺利推进,有益于学生的认识不断深入。