《数学文化》读后感
倚栏轩整理的《数学文化》读后感(精选5篇),提供参考,希望对您有所帮助。
《数学文化》读后感 篇1
在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。
众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。
读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。 天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。
《数学文化》读后感 篇2
寒假里,我看了很多课外书,有《最有趣的30个数学故事》、《马小跳玩数学》等等,其中有一本是老师推荐的《趣味数学》,这本书和它的名字一样有趣,每次我都会被书中的情节深深地吸引住。
这本书的每一个章节都会先引出一个生动的例子,再提出问题,最后由名师进行讲解分析,最后总结并且还会掺插许多生动的故事,非常的有趣。这本书有一个很大的特点,也是我最感性趣的'地方,那就是例举了很多生活中的实例,并把数学问题蕴含在情节中,惟秒惟俏,恰到好处,浅显易懂。比如:快乐足球就是用传球路线形成的几何图形,根据计算线段的原理来解决,太有趣了。又比如:怎样洗衣服最省水,就是一种分配定力的问题,从而引深到煎中药,煎中药分二次,第一次用一碗水,第二次用半碗水,效果才是最好的。以前不明白为什么,现在终于懂得,这样才能有效地提取中药里面的成分。我把这个方法讲给奶奶听,奶奶夸我年纪小小就懂这么多,我心里美滋滋的。
这真的是一本很有趣的好书,看完后我学会了好多课堂上没教过的东西。非常的感性趣,让我的学习充满了乐趣,也使我更加的热爱思考,我太喜欢它了!
《数学文化》读后感 篇3
数学,是人用来解释世界的语言;数学,是使人类进步的阶梯;数学,是生命的方程式;数学,这里有一本好书,书的名字叫《马小跳玩数学》。
《马小跳玩数学》写了很多好玩又与众不同的生活小趣事,譬如:路的交叉点、大黄狗捉耗子、环保小卫士、分苹果等等。其中我最喜欢的`是疯狂追击,讲的是马小跳和唐飞、张达、毛超一起去看电影,在中途讨论汽车何时才能追上火车。我定睛一看,这就是典型的追及问题,而且很接近我的生活:我家有一个摇摆车,现在摇摆车在我们小区里十分流行。我们都喜欢拿出来一比高下,不过我们比的不是外表,而是速度。我可以滑得很快,而且也喜欢比赛。有一次我和一个小朋友比赛,为了让他觉得胜券在握,我故意站在他后方4米处起跑。他大概每秒能跑2米,而我比他快一些,大约每秒3米。尽管是他来喊开始,可我还是在5、6秒后追上了他。就这样在不知不觉中,我巧妙地用数学取得了胜利,不得不说,数学就是我生活中的一部分。
数学,正如唐飞所说:数学是一门相当有用的科学,有了它的帮助,再加上咱这聪明的脑袋瓜儿,账是算得越来越明白了。
《数学文化》读后感 篇4
文中指出:“课程形态的数学文化是反映数学文化研究的成果,它从可操作的实践层面为数学文化教育价值奠定基础;它从哲学的层次,用通俗的语言表达深刻的数学思想观念系统,并以一定的形式呈现给学习者。”“在数学教学中,教师应通过“数学文化”的传播、交流、体验和感悟,使学生加深对数学文化特性的了解和数学本质的认识,从而使学生树立正确的数学观。让学生在学习数学的过程中受到一定的文化感染,产生文化共鸣,体验到数学文化的品味和世俗的人情味。”怎样挖掘数学文化素材,融入平时的数学课堂教学?我觉得可以从以下几个方面进行尝试:
一、数学家与数学发明
在平时的备课过程中,应该注意对一些数学家相关的故事进行收集并作熟悉的了解,这样当在课堂上讲到相关内容、与学生交流、数学课外活动时就可以信手拈来,随时插入课堂教学中对学生进行数学文化的人文价值教育。如,在解决“如果每对兔子每月可生一对小兔,每对小兔在第二月也可以生产一对小兔,如此继续下去,且不发生死亡,问一年中共可生兔多少对”这一问题时,可以向学生介绍意大利数学家斐波那契的斐波那契数列的知识;在进行“圆柱体体积计算公式”教学时,可以先介绍曹冲称象的故事;在讲解“等差数列求和公式”时可以向学生介绍德国的“数学王子”高斯的小故事等等。总之,以数学家为线索的数学文化源远流长、包罗万象,我们可根据教材所涉及的知识介绍不同层次的相关内容,激发了学生学习的兴趣。
二、美学与数学文化
文化的美学观是构成数学文化的重要内容.古代数学家、哲学家普洛克拉斯断言:"哪里有数,哪里就有美."开普勒也说:"数学是这个世界之美的原型."对数学文化的审美追求已成为数学得以发展的重要动力.以致法国诗人诺瓦利也曾高唱:"纯数学是一门科学,同时也是一门艺术.既是科学家同时又是艺术家的数学工作者,是大地上的唯一的幸运儿.在教学过程中应引导学生去发现数学中的美。符号是数学的一大特征。有些人见到一个个符号就犹如听到一个个美丽动听的音符;有些人见到了符号就眼花,搞得晕头转向、不知所以,这与他们对符号本身的认识程度有关,所以在课堂教学,适当介绍一些数学符号的来龙去脉,无疑有助于提高学生对符号的深刻认识,并从中得到乐趣。比如,在立体几何课应该适当提及到学生感兴趣的美术绘画,传授学生如何把立体的图形画在平面上。
当然,教师应该注意提高自身的美学修养,要有对学生进行美学教育的意识,让学生体会到数学是赏心悦目的,使追求和探索数学中的美成为学生学习数学的动力,并引导学生利用数学中的美陶冶性情,实现数学的文化教育功能。
三、文学与数学文化
数学和文学的思考方法往往是相通的。举例来说,数学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。数学中的轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么文学中的对仗是什么?以王维所云:“明月松间照,清泉石上流”为例来说,这里,上联对下联,其中字词句的某些特性不变,如“明月”对“清泉”,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变,看其余各词均如此。不难发现,变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。
四、诗歌与数学文化
尽管诗歌与数学在我们今天看来属于两种不同的文化,但从历史上看,两者却有着千丝万缕的联系:数学问题和解答、运算法则常常以诗歌形式来表达。在数学教学中如果能有机地将这些数学诗歌融入课堂中,让学生充分感受诗歌中的数学美,不仅能提高学生学习数学的兴趣,而且能使学生对数学有更深的理解。如著名的“李白打酒诗”:李白街上走,提壶去打酒。遇店加一倍,遇花喝一斗。三遇店和花,喝干壶中酒。试问酒壶中,原有多少酒?该诗的大意是:李白在大街上走,提着酒壶边喝边打酒,遇到酒店将酒壶中的酒加倍,见到花就喝一斗酒,三次遇到酒店,三次见到花,最后喝光了壶中的酒,原来壶中有多少酒?用逆向思维知,最后遇见的一定是花。因此依次遇到的是酒店、花、酒店、花、酒店、花。设原来壶中有酒x斗,由题意可知:2【2(2x-1)】-1=0.解方程,得x=7/8
总之,要在数学教学中渗透数学文化离不开数学史,但又不能仅限于数学史,还应该有一些“非数学”的内容。教师只有结合学生实际,精心创设教学情境,努力诱发学生强烈的求知欲,为学生学习做好充分的课堂准备,才能将数学文化的魅力真正融入教材、到达课堂、溶入教学,才能让学生进一步理解数学,喜欢数学、热爱数学,从而主动探索,进而获取知识。
《数学文化》读后感 篇5
暑假期间,我有幸拜读了张景中院士所写的书,它让我感受到了数学的魅力所在。
自从我翻开它的第一页起,便会不断地发现惊喜。有些在数学中的定律,在生活中也能体现出来。作者所说的话,细细想都很有道理,但我就是缺少那种坚持下去的毅力。如果你再往前多想一步,你便会惊奇地发现果真如他所说。读他的`书时,我总会频频点头,但又摸不清他的原因所在。作者就像一位魔术师,在他书中的数学问题,都是一环套一环,这个问题告诉你了一种解法,还要指引你去想另一种,就像剥洋葱,不剥到你见心就不能停下。
我很佩服张景中老师,他在书中讲的不单单是数学知识,有很多语言的技巧和故事也包含在内,让我感受到数学的思维多么严谨。就拿第一章来说吧,《交换和条件》,在数学里的加法交换律,是把这几个数字怎么交换相加都可以。但在语言中许多事情或语序颠倒,意思就完全不一样了。如果你说小明一边吃水果还一边看着书,那就让人认为他爱学习,就连吃水果时也要看书;但如果把语序颠倒一下,那又截然不同了。小明一边读书还一边吃水果,那说明他读书不认真,三心二意。他说的真的很对,这太有趣了吧。
从这本书中,我读到了语言而魅力;从数学家笔下,我看到了数学的世界;我在数学的世界里,体验它的神奇。
这本书帮助我学习数学,不,不仅仅是数学,是由数学把我引向了另外一个世界。